Counterfeit Anomaly Using Generative Adversarial Network for Anomaly Detection
نویسندگان
چکیده
منابع مشابه
Anomaly Detection in Network using
As the network dramatically extended security considered as major issue in networks. There are many methods to increase the network security at the moment such as encryption, VPN, firewall etc. but all of these are too static to give an effective protection against attack and counter attack. We use data mining algorithm and apply it to the anomaly detection problem. In this work our aim to use ...
متن کاملOnline Anomaly Detection under Adversarial Impact
Security analysis of learning algorithms is gaining increasing importance, especially since they have become target of deliberate obstruction in certain applications. Some security-hardened algorithms have been previously proposed for supervised learning; however, very little is known about the behavior of anomaly detection methods in such scenarios. In this contribution, we analyze the perform...
متن کاملNetwork Traffic Anomaly Detection
This paper presents a tutorial for network anomaly detection, focusing on non-signature-based approaches. Network traffic anomalies are unusual and significant changes in the traffic of a network. Networks play an important role in today’s social and economic infrastructures. The security of the network becomes crucial, and network traffic anomaly detection constitutes an important part of netw...
متن کاملAnomaly-based detection using synergetic neural network
Network traffic anomaly detection has become a popular research tendency, as it can detect new type attacks in real time. However, the network traffic appears as a complex dynamic system, causing by the collaboration of many network factors. Although various methods have been proposed to detect anomalies, they are mostly based on the traditional statistical physics. In these methods, all factor...
متن کاملNetwork Anomaly Detection using Soft Computing
One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3010612